Genomic Transformation of the Picoeukaryote Ostreococcus tauri
نویسندگان
چکیده
Common problems hindering rapid progress in Plant Sciences include cellular, tissue and whole organism complexity, and notably the high level of genomic redundancy affecting simple genetics in higher plants. The novel model organism Ostreococcus tauri is the smallest free-living eukaryote known to date, and possesses a greatly reduced genome size and cellular complexity, manifested by the presence of just one of most organelles (mitochondrion, chloroplast, golgi stack) per cell, and a genome containing only ~8000 genes. Furthermore, the combination of unicellularity and easy culture provides a platform amenable to chemical biology approaches. Recently, Ostreococcus has been successfully employed to study basic mechanisms underlying circadian timekeeping. Results from this model organism have impacted not only plant science, but also mammalian biology. This example highlights how rapid experimentation in a simple eukaryote from the green lineage can accelerate research in more complex organisms by generating testable hypotheses using methods technically feasible only in this background of reduced complexity. Knowledge of a genome and the possibility to modify genes are essential tools in any model species. Genomic, Transcriptomic, and Proteomic information for this species is freely available, whereas the previously reported methods to genetically transform Ostreococcus are known to few laboratories worldwide. In this article, the experimental methods to genetically transform this novel model organism with an overexpression construct by means of electroporation are outlined in detail, as well as the method of inclusion of transformed cells in low percentage agarose to allow selection of transformed lines originating from a single transformed cell. Following the successful application of Ostreococcus to circadian research, growing interest in Ostreococcus can be expected from diverse research areas within and outside plant sciences, including biotechnological areas. Researchers from a broad range of biological and medical sciences that work on conserved biochemical pathways may consider pursuing research in Ostreococcus, free from the genomic and organismal complexity of larger model species.
منابع مشابه
Clocks in the green lineage: comparative functional analysis of the circadian architecture of the picoeukaryote ostreococcus.
Biological rhythms that allow organisms to adapt to the solar cycle are generated by endogenous circadian clocks. In higher plants, many clock components have been identified and cellular rhythmicity is thought to be driven by a complex transcriptional feedback circuitry. In the small genome of the green unicellular alga Ostreococcus tauri, two of the master clock genes Timing of Cab expression...
متن کاملGenome sequence of Ostreococcus tauri virus OtV-2 throws light on the role of picoeukaryote niche separation in the ocean.
Ostreococcus tauri, a unicellular marine green alga, is the smallest known free-living eukaryote and is ubiquitous in the surface oceans. The ecological success of this organism has been attributed to distinct low- and high-light-adapted ecotypes existing in different niches at a range of depths in the ocean. Viruses have already been characterized that infect the high-light-adapted strains. Os...
متن کاملGenome sequence of Ostreococcus tauri virus OtV-2 enlightens the role of picoeukaryote niche separation in the ocean Running title: Genome sequence of a low light Ostreococcus tauri virus
Ostreococcus tauri, a unicellular marine green alga, is the smallest known free-living eukaryote and is ubiquitous in the surface oceans. The ecological success of this organism has been attributed to distinct lowand high-light adapted ecotypes existing in different niches at a range of depths in the ocean. Viruses have already been characterised that infect the high-light adapted strains. Ostr...
متن کاملA Viral Immunity Chromosome in the Marine Picoeukaryote, Ostreococcus tauri
Micro-algae of the genus Ostreococcus and related species of the order Mamiellales are globally distributed in the photic zone of world's oceans where they contribute to fixation of atmospheric carbon and production of oxygen, besides providing a primary source of nutrition in the food web. Their tiny size, simple cells, ease of culture, compact genomes and susceptibility to the most abundant l...
متن کاملContrasting photoacclimation costs in ecotypes of the marine eukaryotic picoplankter Ostreococcus
Ostreococcus, the smallest known marine picoeukaryote, includes lowand high-light ecotypes. To determine the basis for niche partitioning between Ostreococcus sp. RCC809, isolated from the bottom of the tropical Atlantic euphotic zone, and the lagoon strain Ostreococcus tauri, we studied their photophysiologies under growth irradiances from 15 mmol photons m22 s21 to 800 mmol photons m22 s21 wi...
متن کامل